Population Level Health Management and Predictive Analytics

There has been much discussion of population health management coupled with predictive analytics recently in the health care field. Why? Most who are discussing these topics see it as a means of improving the health of patients while reducing the costs of doing so. Providing better care at lower costs is becoming necessary as payers are beginning to pay for quality outcomes as they move away from fee-for-service.

how to get yourself to burp

What is population health and how does predictive analytics fit in? Let me begin by defining population health and illustrate predictive analytics. In statistics, population refers to the complete set of objects of interest to the investigation. For instance, it could be the temperature range of adolescents with measles. It could be the individuals in a rural town who are prediabetic. These two are of interest in healthcare. Population also applies to any other field of research. It could be the income level of adults in a county or the ethnic groups living in a village.

Typically, population health management refers to managing the health outcomes of individuals by looking at the collective group. For instance, at the clinical practice level, population health management would refer to effectively caring for all the patients of the practice. Most practices segregate the patients by diagnosis when using population health management tools, such as patients with hypertension. Practices typically focus on patients with high costs for care so that more effective case management can be provided to them. Better case management of a population typically leads to more satisfied patients and lower costs.

Population health from the perspective of a county health department (as illustrated in last month’s newsletter) refers to all the residents of a county. Most services of a health department are not provided to individuals. Rather, the health of residents of a county is improved by managing the environment in which they live. For instance, health departments track the incidence of flu in a county in order to alert providers and hospitals so that they are ready to provide the levels of care needed.

You should be able to see that the population whose health is being managed depends upon who is providing the service. Physician practices’ population is all the patients of the practice. For county health departments it is all residents of a county. For the CDC it is all residents of the United States.

Once the population is identified, the data to be collected is identified. In a clinical setting, a quality or data team is most likely the body that determines what data should be collected. Once data is collected, trends in care can be identified. For instance, a practice may find that the majority of the patients who are identified as being hypertensive are managing their condition well. The quality team decides that more can be done to improve the outcomes for those who do not have their blood pressure under control. Using the factors from the data that it has collected the team applies a statistical approach called predictive analytics to see if can find any factors that may be in common among those whose blood pressure is not well managed. For instance, they may find that these patients lack the money to buy their medication consistently and that they have trouble getting transportation to the clinic that provides their care service. Once these factors are identified, a case manager at the clinic can work to overcome these barriers.

Leave a Reply

Your email address will not be published. Required fields are marked *